Which Fast Nearest Neighbour Search Algorithm to Use?

نویسندگان

  • Aureo Serrano
  • Luisa Micó
  • José Oncina
چکیده

Choosing which fast Nearest Neighbour search algorithm to use depends on the task we face. Usually kd-tree search algorithm is selected when the similarity function is the Euclidean or the Manhattan distances. Generic fast search algorithms (algorithms that works with any distance function) are only used when there is not specific fast search algorithms for the involved distance function. In this work we show that in real data problems generic search algorithms (i.e. MDF-tree) can be faster that specific ones (i.e. kd-tree).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending LAESA Fast Nearest Neighbour Algorithm to Find the k Nearest Neighbours

Many pattern recognition tasks make use of the k nearest neighbour (k–NN) technique. In this paper we are interested on fast k– NN search algorithms that can work in any metric space i.e. they are not restricted to Euclidean–like distance functions. Only symmetric and triangle inequality properties are required for the distance. A large set of such fast k–NN search algorithms have been develope...

متن کامل

Some improvements on NN based classifiers in metric spaces

The nearest neighbour (NN) and k-nearest neighbour (k-NN) classification rules have been widely used in Pattern Recognition due to its simplicity and good behaviour. Exhaustive nearest neighbour search may become unpractical when facing large training sets, high dimensional data or expensive dissimilarity measures (distances). During the last years a lot of fast NN search algorithms have been d...

متن کامل

Extending Fast Nearest Neighbour Search Algorithms for Approximate k-NN Classification

The nearest neighbour (NN) and k-nearest neighbour (kNN) classi cation rules have been widely used in pattern recognition due to its simplicity and good behaviour. Exhaustive nearest neighbour search can become unpractical when facing large training sets, high dimensional data or expensive similarity measures. In the last years a lot of NN search algorithms have been developed to overcome those...

متن کامل

Testing Some Improvements of the Fukunaga and Narendra's Fast Nearest Neighbour Search Algorithm in a Spelling Task

Nearest neighbour search is one of the most simple and used technique in Pattern Recognition. One of the most known fast nearest neighbour algorithms was proposed by Fukunaga and Narendra. The algorithm builds a tree in preprocess time that is traversed on search time using some elimination rules to avoid its full exploration. This paper tests two new types of improvements in a real data enviro...

متن کامل

An efficient approximation-elimination algorithm for fast nearest-neighbour search based on a spherical distance coordinate formulation

Ramasubramanian, V. and K.K. Paliwal, An efficient approximation-elimination algorithm for fast nearest-neighbour search based on a spherical distance coordinate formulation, Pattern Recognition Letters 13 (1992) 471-480. An efficient approximation-elimination search algorithm for fast nearest-neighbour search is proposed based on a spherical distance coordinate formuTation, where a vector in K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013